

Disruptive pemfc stack with n**O**vel materia**L**s, **P**rocesses, arc**H**itecture and optimized **IN**terfaces

Overview of DOLPHIN: objectives and developments

(Joël PAUCHET, CEA, coordinator)

DOLPHIN Overview

Call year: 2018

Call topic: FCH-01-6

Game changer fuel cell stack for automotive applications

Project dates: 01/01/2019 - 31/12/2022

FCH-JU max. contribution: 2 962 681 € Partners contribution: 218 750 €

Overview of DOLPHIN

7 partners: 4 industries + 3 RTO 7 countries: 6 in Europe + USA

Overview of DOLPHIN

Overview of DOLPHIN

Overview of DOLPHIN

Overview of DOLPHIN

Overview of DOLPHIN

Overview of DOLPHIN

Overview of DOLPHIN

DOLPHIN Project: 1st public workshop (cell and manufacturing technologies) - virtual – 18/06/2021

European

Commission

European

Commission

Validate disruptive technologies for 100 kW light-weight & compact fuel cell stack designs, with high power density and enhanced durability (under automotive application conditions), and compatible with large scale/mass production of full power-stacks.

Overview of DOLPHIN

Validate disruptive technologies for 100 kW light-weight & compact fuel cell stack designs, with high power density and enhanced durability (under automotive application conditions), and compatible with large scale/mass production of full power-stacks.

Main KPIs	Int. SoA 2017 (AutoStackCore)	DOLPHIN (~ FCH-JU 2024 targets)
Weight-specific power density (kW/kg) at nominal power	3.4	≥ 4.0 (≥ +18%)
Volumetric power density (kW/l) at nominal power	4.1	≥ 5.0 (≥ +25%)
Area-specific power density (W/cm ²) at 0.66 V	1.13	2.0 (+75%)
Cost (€/kW) at 100 000 units/year	36.8	< 20 (-45%)
Durability (hours)	3,500	6,000 (+70%)
Stack max operating temperature (°C)	95	105 (+10°C)

Overview of DOLPHIN

Validate disruptive technologies for 100 kW light-weight & compact fuel cell stack designs, with high power density and enhanced durability (under automotive application conditions), and compatible with large scale/mass production of full power-stacks.

Main KPIs	Int. SoA 2017 (AutoStackCore)	DOLPHIN (~ FCH-JU 2024 targets)
Weight-specific power density (kW/kg) at nominal power	3.4	≥ 4.0 (≥ +18%)
Volumetric power density (kW/l) at nominal power	4.1	≥ 5.0 (≥ +25%)
Area-specific power density (W/cm ²) at 0.66 V	1.13	2.0 (+75%)
Cost (€/kW) at 100 000 units/year	36.8	< 20 (-45%)
Durability (hours)	3,500	6,000 (+70%)
Stack max operating temperature (°C)	95	105 (+10°C)

Overview of DOLPHIN

Validate disruptive technologies for 100 kW light-weight & compact fuel cell stack designs, with high power density and enhanced durability (under automotive application conditions), and compatible with large scale/mass production of full power-stacks.

Main KPIs	Int. SoA 2017 (AutoStackCore)	DOLPHIN (~ FCH-JU 2024 targets)
Weight-specific power density (kW/kg) at nominal power	3.4	≥ 4.0 (≥ +18%)
Volumetric power density (kW/l) at nominal power	4.1	≥ 5.0 (≥ +25%)
Area-specific power density (W/cm ²) at 0.66 V	1.13	2.0 (+75%)
Cost (€/kW) at 100 000 units/year	36.8	< 20 (-45%)
Durability (hours)	3,500	6,000 (+70%)
Stack max operating temperature (°C)	95	105 (+10°C)

Overview of DOLPHIN

5 kW demonstrator (CEA, ZSW) with improved materials/processes

Overview of DOLPHIN

5 kW demonstrator (CEA, ZSW) with improved materials/processes

Single Repeat Unit

Overview of DOLPHIN

DOLPHIN Project: 1st public workshop (cell and manufacturing technologies) - virtual – 18/06/2021

European Commission

Electrical and Fluidics Core

Overview of DOLPHIN

5 kW demonstrator (CEA, ZSW)

Technical Developments

with improved materials/processes	Single Repeat Unit		Thinner metallic plates (SYM) Thinner carbon-based plates (HEXCEL) Treatments of plates (SYM, CEA)	Electrical and
		New (ZSW, CEA, SYM) Flow Field design with downsized rib/channel pitch by printing (CEA), molding (HEXCEL), stamping (SYM), additive manufacturing (DMG-MORI), laser milling (ZSW)	Fluidics Core	
		Thin GDL substrate (HEXCEL), with MPL and treatments (CEA)	Interface	
		Or only MPL coated onto AL (ZSW, CEA)		
		Thinner (<10 μm) or beyond PFSA membrane (CHEM) with SLG coating (UoM)	JoM) Electrochemica	
			2D toutured esthede AL (CEA) with	Core
			improved ionomers (CHEM)	

Overview of DOLPHIN

Overview of DOLPHIN

DOLPHIN Project: 1st public workshop (cell and manufacturing technologies) - virtual – 18/06/2021

European Commission

Example of potential final designs

'Lower' risk approach : downsized components, alternative materials and processes, membrane protection

Overview of DOLPHIN

Example of potential final designs

European Commission

'Lower' risk approach : downsized components, alternative materials and processes, membrane protection

Reduce mass, volume Increase performance, durability

Overview of DOLPHIN

Contribution to the targets

23

Main	KPIs	Int. SoA 2017 (ASC)	DOLPHIN	Developments	
Area-speci density (W/cr	fic power n²) at 0.66 V	1.13	2.0 (+75%)	 Downscale rib-channel dimensions (EFC) Thinner GDM (or remove GDM) and thinner membrane (<10 µm, EC) In-plane gradients (EC) 	
Weight-spee density (k nominal	cific power W/kg) at power	3.4	≥ 4.0 (≥ +18%)	 Increase W/cm² Reduce sheet thickness down to 50 µm (EFC) Replace metallic sheets by carbon sheets (EFC, ITP) Remove GDM, lighter ITP 	
Volumetric po (kW/l) at nor	ower density ninal power	4.1	≥ 5.0 (≥ +25%)	 Increase W/cm² Reduce sheet thickness down to 50 µm (EFC) Replace metallic sheets by carbon sheets (EFC, ITP) Remove GDM Thinner ITP 	
Cost (€/kW) units/	at 100 000 'year	36.8	< 20 (-45%)	Reduce quantity of materialsNew manufacturing processes	
Durability	/ (hours)	3,500	6,000 (+70%)	 Replace metallic sheets by carbon sheets (remove welding, EFC) In-plane and through-plane gradients (EC, EFC) SLG coated membrane 	
Stack max temperat	operating ture (°C)	95	105 (+10°C)	New membrane (EC)SLG coated membrane (EC)	
Overview of DOLPHIN		PHIN	DOLPHIN Project: 1st public workshop (cell and manufacturing technologies) - virtual – 18/06/2021		

Overview of DOLPHIN

Overview of DOLPHIN

Structure of the project

Overview of DOLPHIN

Disruptive pemfc stack with nOvel materiaLs, Processes, arcHitecture and optimized INterfaces

The DOLPHIN project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No. 826204. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

DOLPHIN Project: 1st public workshop (cell and manufacturing technologies) - virtual – 18/06/2021

Liten Ceatech European Commission

The University of Manchester

DMG MORI