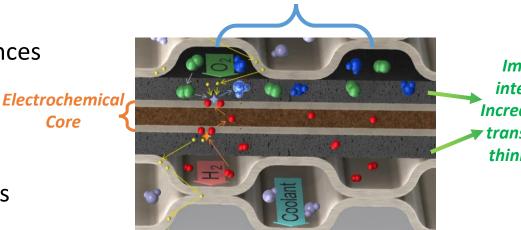


Disruptive pemfc stack with n**O**vel materia**L**s, **P**rocesses, arc**H**itecture and optimized **IN**terfaces

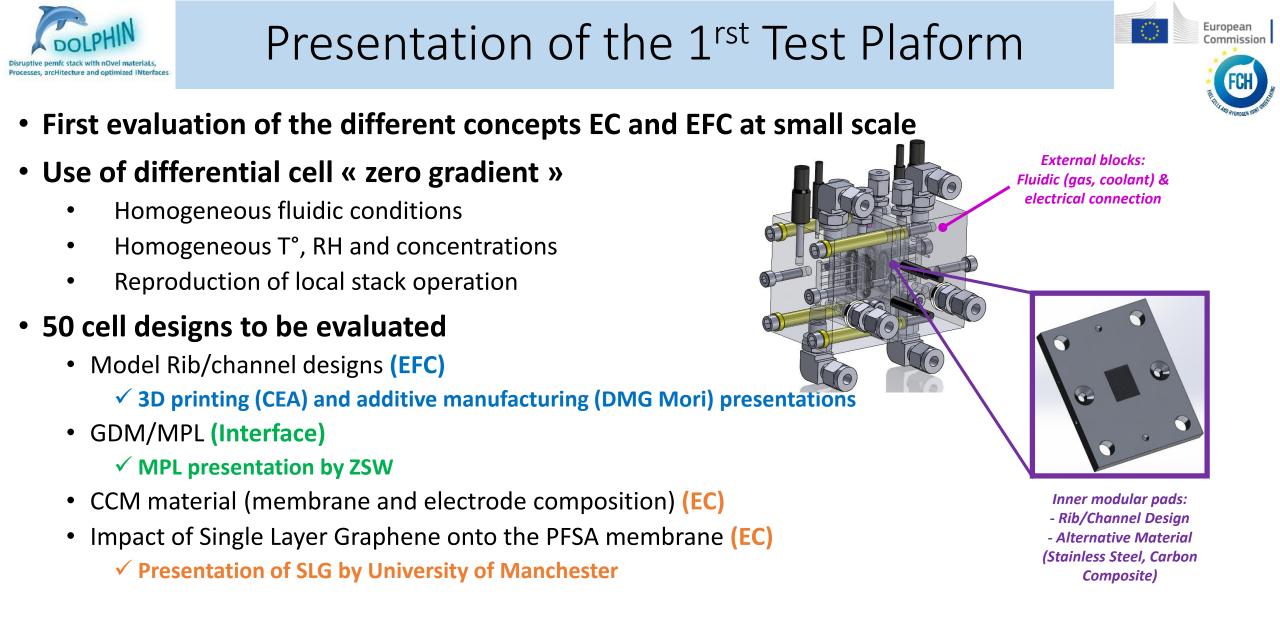
Innovative cell design features to improve PEMFC performances

Fabrice MICOUD, CEA LITEN



Presentation outline

- Experimental strategy for the validation of innovative concepts for Electrochemical and Electric and Fluidic Cores
- Two main aspects
 - Electric and Fluidics Core
 - \rightarrow Impact of the rib/channel design on the performances
 - Optimization of the EC|EFC interface
 - \rightarrow Development of self-standing MPL materials
 - \rightarrow Towards the suppression of GDM support materials to reduce cell thickness

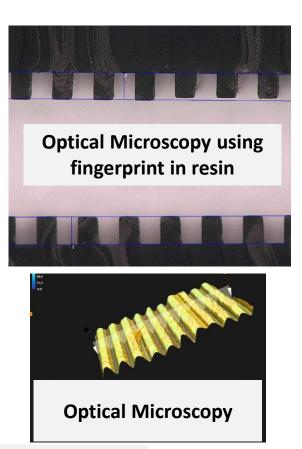

Reduction of the rib/channel size design

Improving interfaces & Increasing mass transport with thinner layers

DOLPHIN objectives: Increase of the performances by decreasing the cell dimensions by optimizing EC, EFC and EC|EFC interface

Innovative cell design features to improve PEMFC performances

Innovative cell design features to improve PEMFC performances



• In litterature/modelling : reduction of the design pitch

Decrease in mass transport limitations (higher gas diffusion and facilitated water removal)

- Use of model pads with machined design rib/channel design
 - Stainless Steel with gold coating
 - SoA : 600/600 μm depth 200 μm (anode) and 300 μm (cathode)
 - 400 / 400 μm depth 200 μm
 - + 200 / 200 μm depth 200 μm
 - + 100 / 100 μm depth 100 μm
- Metrological control before cell assembly
 - Machined rib/channel design : OK down to 200 /200 -200 μm
 - Some local milling defects for the thinnest design with 100/100 -100 μm

Innovative cell design features to improve PEMFC performances

- Experimental approach based on system and stack specifications
- Further definition of local operating conditions based on modeling at cell level
- Reference and commercial materials used as EC and EFC
 - Commercial Gore PRIMEA 3-layer CCM
 - H14C7 as GDL compressed at 125 μm within the cell

				ardac									
	Local conditions			RH	% 02	H2	Air	N2		3 local areas considered			
	H2/air	T/°C	P bara	(%)	(dry)	NI/h	NI/h	NI/h					
Max power	H2 outlet /Air Inlet	85	2.2 / 2.2	98 / 30	21	38	95		H ₂		**		
conditions	Middle zone	90	2.2 / 2.2	90 / 72	14.5	38	65.6	29.4	outlet		***		
conditions	H2 Inlet / Air Outlet	95	2.2 / 2.2	50 / 80	7.8	38	35.3	59.7	Coolant				
Low power	H2 outlet /Air Inlet	70	1.3 / 1.3	98 / 50	21	38	95.0		inlet			-	
conditions	H2 Inlet / Air Outlet	70	1.3 / 1.3	50 / 92	9.3	38	42.1	52.9					
Flooded Water	Middle zone	70	1.3 / 1.3	> 100%	15	38	67,9	27,1	Air inlet				
management													

Innovative cell design features to improve PEMFC performances

DOLPHIN Project: 1st public workshop (cell and manufacturing technologies) - virtual – 18/06/2021

Air

outlet

Coolant

outlet

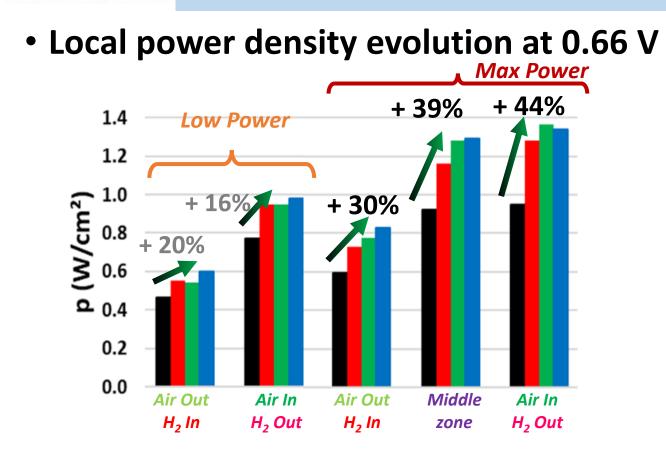
H₂ inlet European

Commission

Rib/Channel design: results

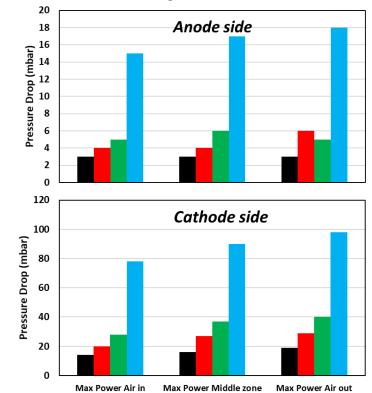
Characterization of local performances at maximum power conditions

Performances greatly improved by reducing the rib/channel size in every local area and under every operating condition → Even in differential/zero gradient cell with high stoichiometries : flow-field design strongly impacts the raw performances


 \rightarrow High interest to decrease rib/channel size down to at least 400 μ m – Minor improvement below 200 μ m

Innovative cell design features to improve PEMFC performances DOLPHIN Project: 1st public workshop (cell and manufacturing technologies) - virtual – 18/06/2021

European


Commission

Rib/Channel design: results

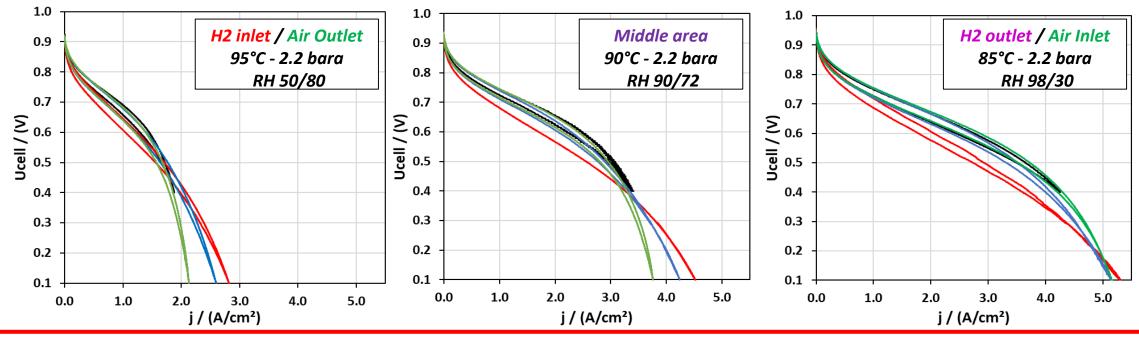
Performance increased in every condition with refined flow field
Power density enhancement : +30%/+44 % @ 0.66 V at max power
No significant difference between 100/100 & 200/200 μm designs

Pressure drop evolution

 High pressure drop below 200/200/200 μm design
« 100 μm size » not realistic for cathode side on large active surface area

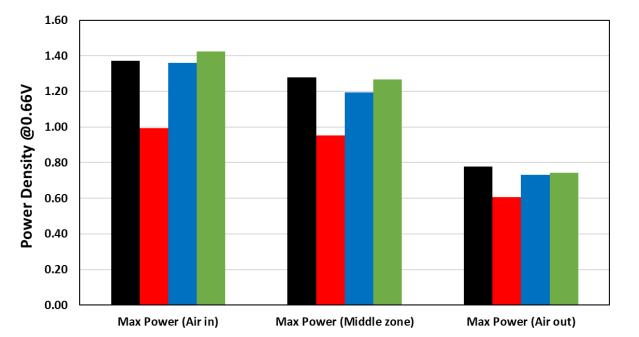
Innovative cell design features to improve PEMFC performances DOLPHIN Project: 1st public workshop (cell and manufacturing technologies) - virtual – 18/06/2021

European


Commission

• Characterizations of 4 configurations

- SoA MEA configuration : Commercial GDL H14C7 from Freudenberg on both sides (thickness without flowfield ca. 280 μm)
- Advanced « no-GDM » MEA configuration (thickness 80 μm : -70 %)
- « Single-sided GDL » MEA: MPL at the anode vs. MPL cathode (thickness 180 μm : -35%)


- Suppression of both GDM layers : reduced performance due to local drying in the CCM near inlet/outlet areas - Refined rib/channel « 200 μm » + single GDM suppression
- \rightarrow Similar / slightly improved perf. vs. reference case

Innovative cell design features to improve PEMFC performances

Comparison of power density at 0.66 V

SoA reference configuration H14C7 (GDM+MPL): Anode + Cathode

No GDM configuration Self-standing MPL: Anode + Cathode

Single-sided GDL configurations H14C7 Anode + MPL Cathode MPL Anode + H14C7 Cathode

- Lower power density than reference under maximum power conditions when removing both GDM layers

- Similar / slightly improved performance with single-sided GDL configuration vs. reference case

- → Promising configuration to decrease total cell thickness: increased stack power density and reduced costs
- \rightarrow To be tested and validated using « real » large single cell (2nd Test Platform)

Innovative cell design features to improve PEMFC performances

Conclusions

- Refining Rib/Channel design is really interesting to improve local performances and local power density
- Minor performance enhancement between « 200 μm » and « 100 μm » rib/channel design
 - Mass transport limitations « shifted » to GDM / GDL layers (ca. 125 μ m thick) ?
 - Performances limited by SoA catalyst layers ?
- Suppression of GDM support / Use of « single-sided GDL » MEA
 - Promising results on 2 cm² cell to reduce the overall cell thickness
 - To be up-scaled and characterized in large single cell in the forthcoming months

Innovative cell design features to improve PEMFC performances

Thank you for your attention!

Disruptive pemfc stack with nOvel materiaLs, Processes, arcHitecture and optimized INterfaces

ceatech

The University of Manchester

