

Disruptive pemfc stack with n**O**vel materia**L**s, **P**rocesses, arc**H**itecture and optimized **IN**terfaces

Graphene coated membrane to improve performance and durability

(Donnchadh Barry, PhD Researcher, University of Manchester)

What is Graphene?

European Commission

- First isolated at the University of Manchester in 2004. Nobel Prize in Physics in 2010.
- Graphene, is impermeable in the perpendicular direction to its basal plane to all atoms and molecules at ambient conditions. In contrast, the transport of thermal protons through defect-free graphene is comparatively fast.
- The rationale for using graphene in proton transport membranes is to exploit its impermeability to all atoms and molecules to increase durability, reduce gas crossover, amongst other benefits; but without decreasing its proton conductivity.

Graphene coated membrane

Overview

Thin (<10 μm) or beyond PFSA membrane (CHEM) with SLG coating (UoM)

Graphene coated membrane

Gas Permeation Tests

Gas transport through graphene-based membranes. Leak rate of helium through various membranes as a function of pressure. Adding single-layer graphene to the reference membrane leads to a decrease in the permeability by a factor of approximately 2 as compared to 'bare' reference. Membrane area <1 cm².

Introduction of Defects

Characterisation of the defective graphene membranes. (a) IV characteristics of graphene (in black) and defective graphene (in blue). The upper inset shows a sketch of the experimental set-up. The devices measured consist of a graphene membrane suspended over an aperture that is 2 μ m in diameter. The introduction of defects has led to an increase of over a factor of 10 in proton conductivity. (b) Areal conductivity of both the graphene and defective graphene. For reference, the setup with no graphene has a proton conductivity of ~160 S/cm². (c) Raman characterisation of the samples showing a clear presence of the disorder-induced D peak in the defective graphene membrane.

Graphene coated membrane

- CEA currently testing the defective graphene.
- Trying to improve transfer of membrane onto electrode.
- Initially concerned that in this process, the graphene is being destroyed. Further optimisation required.

Graphene coated membrane

7

- Graphene is a one-atom-thick material that can be used in fuel cell membranes.
- Coating the membrane with graphene has been shown to reduce gas permeation.
- Introducing defects leads to an increase in proton conductivity.
- Continue to work on testing the defective graphene and optimise this process.

Graphene coated membrane

Disruptive pemfc stack with nOvel materiaLs, Processes, arcHitecture and optimized INterfaces

SYMBIO

Liten Ceatech European Commission

The University of Manchester

DMG MORI

The DOLPHIN project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No. 826204. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.