

Disruptive pemfc stack with n**O**vel materia**L**s, **P**rocesses, arc**H**itecture and optimized **IN**terfaces

Updates on modelling

Informations shared during 1st workshop

• 2D model : influence of GDL thickness

DOLPHIN: 2nd Project Workshop, Ulm

• 3D model : influence of GDL teeth/channel pitch (gas diffusion)

Ionomer and catalyst distribution Clean Hydrogen A

Co-funded by the European Union

Ionomer and catalyst gradient simulation: 2D model (COMSOL)

- Same catalyst layer thicknesses
- Same total Platinium and ionomer amount ۲

Cathode catalyst layer	
Membrane	More Platinium close to the CL/PEM interface
Anode catalyst layer	
Cathode catalyst layer	
Membrane	More Platinium close to the CL/GDL layer
Anode catalyst layer	

Ionomer and catalyst distribution

Clean Hydrogen Partnership Co-funded by the European Union

Ionomer gradient :

~ 1% performance increase putting more ionomer close to membrane

Platinium gradient :

~ 0,3 % performance increase putting more platinum close to membrane

Stack specification and design

1.1 - Stack specification

Specification for the 100kW have been frozen.

Key parameters :

- Max 400 cells (~400V @OCV)
- Active area : 175cm² (<300A @ target max current density 3A/cm²)
- Active_area / total_area ratio : 45% → 384cm² total area
- Max pressure drop : (regarding automotive system constraints)
 - Cathode < 300mbar (for system components, and in/out pressure homogeneity)
 - Anode < 100mbar (for recirculating system efficiency)
 - Cooling < 350mbar (for system integration, and to keep pressure equivalent to gas side)
- End of life criteria : max power reached at 0,6V

General	Max stack voltage (OCV)	400	v	Passenger car architecture (400V boost-only DCDC)		
	Max cell number	400	cells	1V/cell @OCV		
	Active area	175	cm²	To reach 100kW at max power with 400 cells		
	Total area	384	cm²	45% active_area / total_area ratio		

	Stack power	100	kW	
	Cell voltage	0.66	V	
	Min Power density	1.45	W/cm²	Go/no go criteria
	Max current density	3	A/cm²	DOLPHIN target
Max power	Stack voltage	264	V	
	Stack current	379	A	Not over 400A, for safety contactors and DCDC disponibility
·				
Under system conditions)	Stack volumic power density (with end plates)	5	kW/I	КРІ
	Stack massic power density (with end plates)	4	kW/kg	КРІ
	Cooling outlet temperature	90	°C	For vehicle's front radiator easy dimensionning
	Max inlet/outlet temperature difference	12	°C	

100kW Stack specification

Cells dimensions

Key dimensions :

- Max cell pitch : 1,04mm
- Compression technology : straps, or carter (not tie rods, for volume optimization)
- Cells dimensions
 - Active area dimensions is a compromize to match pressure drops for the selected EFC technologies
- Stack dimensions → Target to reach power density
- End plates dimensions and mechanical performances :
 - Max thickness = 25mm
 - Bending under load regarding electrical contact resistance homogeneity

Active area

dimensions

• Max overall flatness regarding sealing compression

Dimensionning chain :

- Reachable perfs (W/cm²)

- Stack Current

- Stack Voltage

- Pressure drops

5kW stack specification (TP4)

Based on the 100kW stack specification, the 5kW stack requirements have also been edited :

- Same cells than the 100kW stack
- Between 15 and 20 cells
- Compression technology : tie rods (most adapted to prototyping)
 - Thicker end plates allowed, to match the bending requirements
 - Larger to allow the space for the rods

Clean Hydrogen

Partnership

Co-funded by

the European Union

Electrical and fluidic core :

 A standard TP4 design have been proposed (manifolds, distribution area, cooling circuit). Modeling have been done to assess the fluids flow and concentration homogeneity :

Electrical and fluidic core

DOLPHIN: 2nd Project Workshop, Ulm

Electrical and fluidic core

Co-funded by the European Union

Cooling flow distribution

 $\Delta p = 6 \text{ mbar}$

This generic design has been adapted for additive manufacturing (cf. Talk 3.2)

Progress on design and modelling – J. Rapior

Characterization protocols and Quality assessment

The project's operating conditions are not necessarely adapted to a system use, mainly regarding stoechiometry and operating pressure. The air compressor is the major power consumer of the system.

➔ Stoechiometry and air pressure needs to be determined carefully to get the best system efficency.

Done for this task :

- Pressure sensivity tests
- System energetic assessment model

Pol Curve Nominal conditions Medium power Max power conditions Low power conditions (10%) (25%) conditions (50%) (100%)Sto H2/Air 2.0/1.8 2.0/1.8 1.5/1.6 1.5/1.6 **RH Anode/Cath** 50%/50% 50%/50% 50%/30% 50%/30% (dew point °C) (50.3°C/50.3°C) (57.5°C/57.5°C) (66.6°C/55.4°C) (66.6°C/55.4°C) Pinlet Anode/Cath 1.3/Patm outlet 1.5/1.3 1.9/1.7 (bar abs) 1.7/1.5 1.7/1.5 2.2/2.0 1.9/1.7 2.2/2.0 2.5/2.3 2.2/2.0 2.8/2.6 2.5/2.3 2.8/2.6 2.5/2.3 2.8/2.6 3.2/3.0 3.5/3.7 (or bench max) Cell Temperature (Coolant Inlet) 65°C 73°C 83°C 83°C 0.3 A/cm2 0.5 A/cm² 2.5 A/cm² and 3 A/cm² (if Fixed Current density points 1.5 A/cm² possible with Ucell >0.5V) (minimum flowrate 0.3 A/cm^{2}

Pressure sensivity test protocol

- Fixed current density values. 5 minutes for each pressure configuration (dwell time similiar to pol. curves)

- Reference FF + ref MEA : possible at CEA

- Refined FF + ref MEA : to be done at ZSW (no refined pads available at CEA)

Co-funded by the European Union

Pressure sensivity test results :

• 4 operating points, with different pressure levels

Co-funded by the European Union

System energetic assessment model :

System operating conditions defined regarding the study's results :

System conditions	Low power conditions (10%)	Nominal power conditions (25%)	Medium power conditions (50%)	Max power conditions (100%)
Current density	0,3 A/cm²	0,5 A/cm²	1,5 A/cm²	2,5 A/cm²
Stoech H2 / Air	2,0 / 1,8	2,0 / 1,8	1,6 / 1,8	1,6 / 1,8
RH Anode / Cathode (Dew Point °C)	40% / 50% (45,8°C / 50,3°C)	40% / 50% (52,8°C / 57,5°C)	30% / 50% (55,4°C / 66,5°C)	30% / 50% (55,4°C / 66,5°C)
P_inlet Anode / Cath (bar_abs)	1,3 / 1,1	1,5 / 1,3	2,2 / 2,0	2,8 / 2,6
Cell Temperature (coolant inlet)	65°C	73°C	83°C	83°C
Cell Temperature (coolant outlet)	77 °C	85°C	95°C	95°C

• 2,5 A/cm² :

- 2,6 bars is still the optimum (63,1 kW net power)
- 3 bars gives a higher gross power (84,5kW vs 81kW), but a lower net power (60,3 kW)
- Less sensivity to flooding with lower pressure

• Anodic stoechiometry adjusted to be representative of a system : high stoechiometry is not reachable with a recirculation system

New anodic HR calculated on the anodic stoichiometry and the temperature.

Cathodic HR based on state of the art, and DOLPHIN tests.

Test protocol

- We also work with different operating conditions as a benchmark :
 - We also test our materials with **GAIA conditions**, who are optimized for high stack performance (high humidity, high pressure)
 Parameter Unit IDE EUH ASC DOL

Parameter	Unit	IDF	EUH	ASC	DOL
T CI	°C	68	80	68	83
T A/C	°C	70	82	70	83
DPT A/C	°C	58.0/43	64.0/53.0	48.4/53.0	57.5/57.5
RH A/C	%	63.6/30.3	50.5/30.2	39.9/50.1	50.0/50.0
Stoic A/C	1	1.4/1.6	1.4/1.6	1.4/1.6	1.5/1.6
p A/C	barg	2.0/1.8	1.5/1.3	1.2/1.0	1.5/1.2
p in/out	-	out	out	out	out
Mingas A/C	A/cm²	0.3	0.3	0.3	0.3
N2 A	%	10	0	30	0

- We are also working in defining some conditions who can be the best compromize between high system efficiency (net power) and stack efficiency (W/cm²).
- Test protocol have beed defined :
 - Compression protocol
 - Break-in
 - Polarization curve
 - Start / stop
 - Durability (FCDLC)

Thank you for your attention!

The University of Manchester

ADDITIVE

Disruptive pemfc stack with nOvel materiaLs, Processes, arcHitecture and optimized INterfaces

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No. 826204. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.