

DOLPHIN

Disruptive pemfc stack with nOvel materiaLs, Processes, arcHitecture and optimized INterfaces

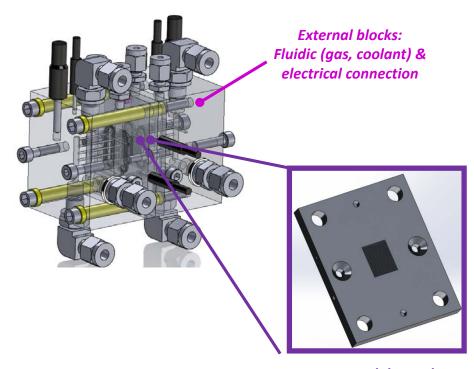
DOLPHIN Workshop, Ulm June 16th 2023

Technological highlights: components, production technology, performance results

CEA Team: <u>Fabrice MICOUD</u>, Thomas CAVOUE, Clémence MARTY, Charlène SIGUENZA, Ludovic ROUILLON, Denis TREMBLAY, Jean-François BLACHOT, Jean-Philippe POIROT-CROUVEZIER and Joël PAUCHET

ZSW Team: Benjamin WIEDEMANN, Michael SCHMID, Sepehr SAADAT, Florian WILHELM

First evaluation of the different concepts EC and EFC at small scale


- Homogeneous fluidic conditions
- Homogeneous T°, RH and concentrations
- Reproduction of local stack operation

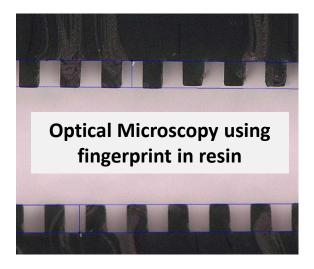
Many designs and configurations to be evaluated

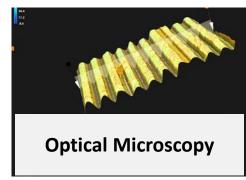
- Model Rib/channel designs (EFC)
 - √ 3D printing (CEA) and additive manufacturing (DMG Mori)
 - √ Channels formed into GDM
- EC | EFC Interface
 - √ Optimisation of MPL layer (ZSW)
 - √ Removal of GDM/GDL
- CCM material (membrane and electrode composition) (EC)
- Impact of Single Layer Graphene onto the PFSA membrane (EC)

Fabrice MICOUD

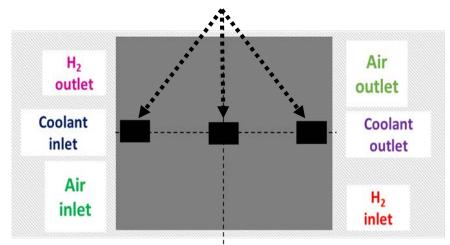
✓ Presentation of SLG by University of Manchester

Inner modular pads:
- Rib/Channel Design
- Alternative Material
(Stainless Steel, Carbon
Composite)




Experimental methodology

- Approach based on system and stack specifications
- Further definition of local operating conditions based on modeling at cell level
- Reference and commercial materials used as EC and EFC
 - Commercial Gore CCM (0.1 / 0.4 mg_{Pt}/cm²) & Commercial GDL materials
 - Model flowfield designs by machining

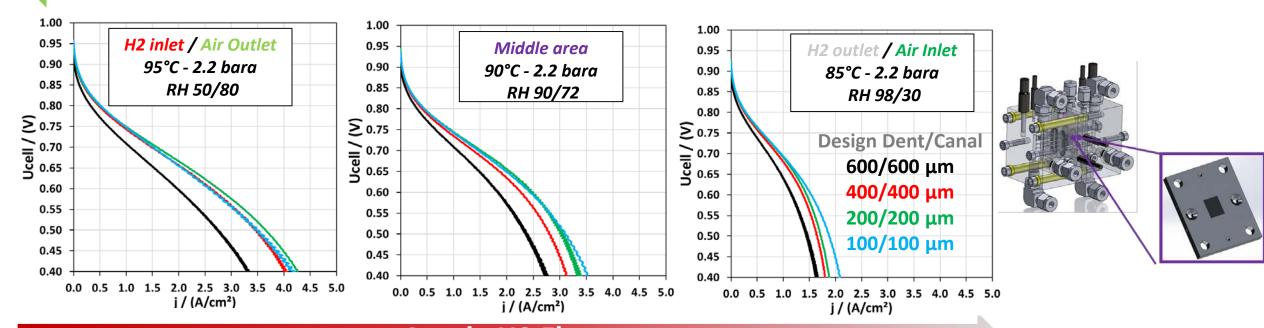


Metrology control for reference milled designs

Fabrice MICOUD

3 local areas considered

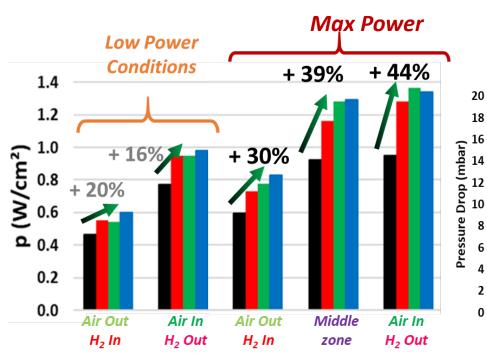
3 sets of operating conditions tested Low/Max Power and Flooded



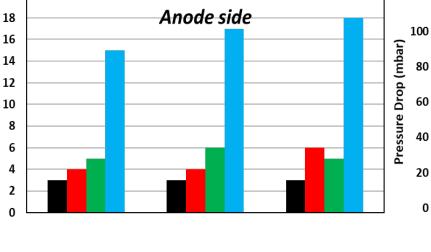
Performances evaluation from local operating conditions

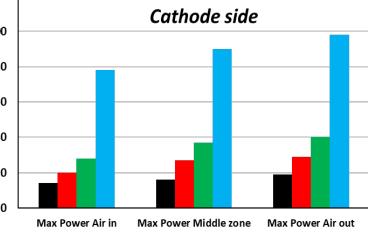
Characterization of local performances at maximum power conditions

Anode H2 Flow


Performances greatly improved by reducing the rib/channel size in every local area and under every operating condition

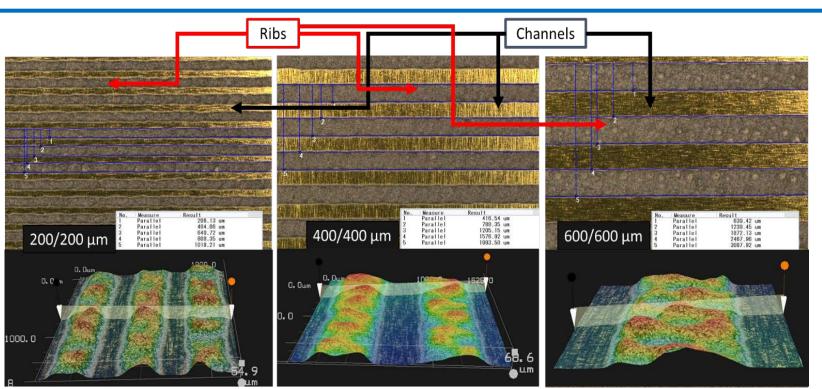
- → Even in differential/zero gradient cell with high stoichiometries : flow-field design strongly impacts the raw performances
- \rightarrow High interest to decrease rib/channel size down to at least 400 μ m Minor improvement below 200 μ m




Performances evaluation from local operating conditions

- Performance increased in every condition with refined flow field
- Power density enhancement : +30%/+44 % @ 0.66 V at max power
- No significant difference between 100/100 & 200/200 μm designs

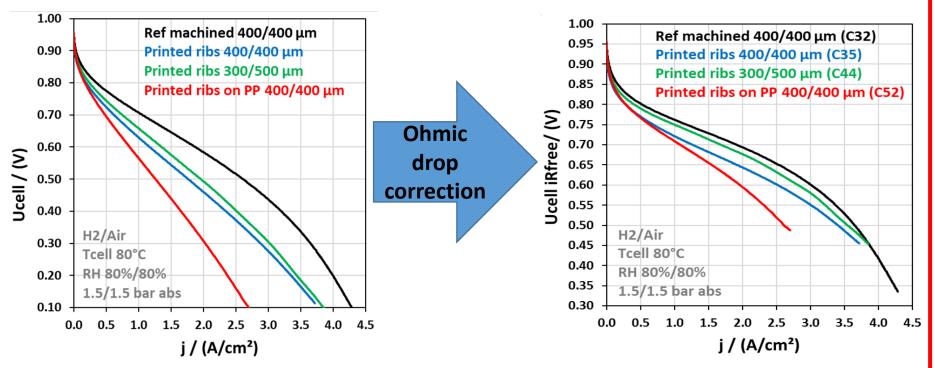
- High pressure drop below 200/200/200 μm design
- « 100 μm size » not realistic for cathode side on large active surface area



Investigations for innovative flow-field & manufacturing processes

- Refined flow-field not achievable by SoA metallic sheet stamping
- New manufacturing methods have to be found
 - Carbon ribs printing onto flat substrate
 - Channel integration into GDM layer
 - Additive manufacturing plates / Laser milling
- → Preliminary developed/tested at small scale (2 cm²)
 - → Prototypes directly tested at 100 cm²

- -Very thin designs can be obtained by printing carbon ribs
- Very flexible manufacturing process by screen printing

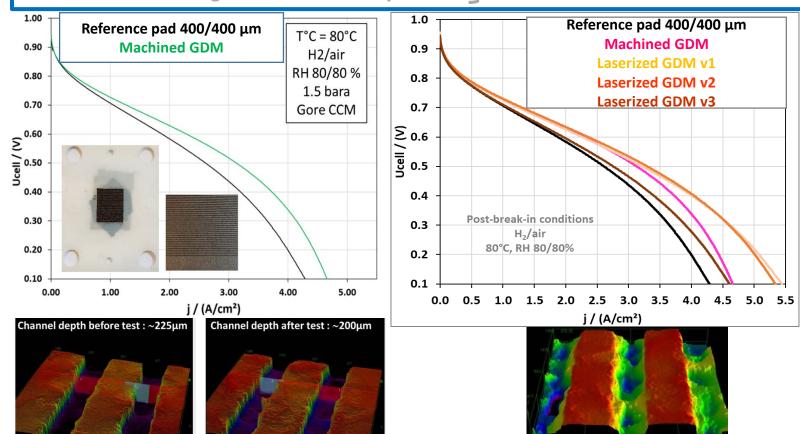


Investigations for innovative flow-field manufacturing processes

- Refined flow-field not achievable by SoA metallic sheet stamping
- New manufacturing methods have to be found
 - Carbon ribs printing onto flat substrate
 - Channel integration into GDM layer

→ Preliminary developed/tested at small scale (2 cm²)

- Lower electrochemical performances
- Gap mainly due to intrinsic electronic resistance within the ribs
- Further optimization of the ink composition still in progress
- Prepreg materials: not suitable so far to be integrated as substrate

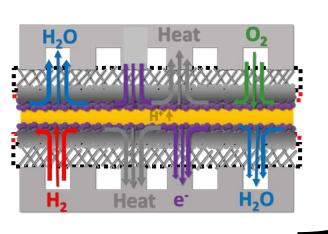


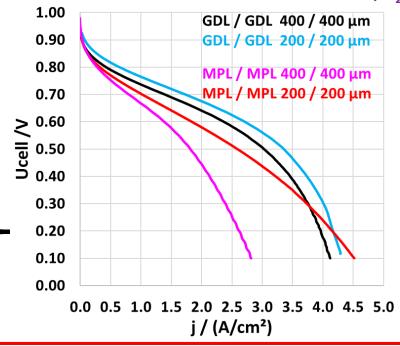
Investigations for innovative flow-field manufacturing processes

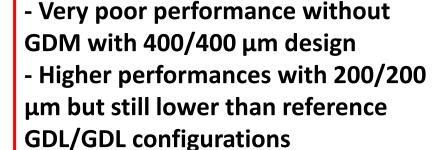
- Refined flow-field not achievable by SoA metallic sheet stamping
- New manufacturing methods have to be developed
 - Carbon ribs printing onto flat substrate
 - Channel integration into GDM layer

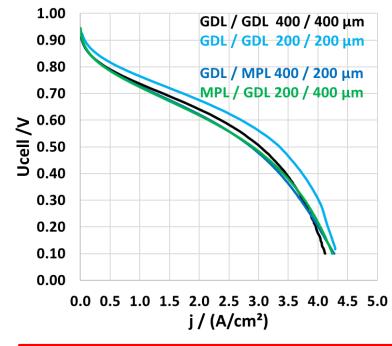
→ Preliminary developed/tested at small scale (2 cm²)

- Require thicker GDM/GDL to create channels (but overall cell thickness decreased) and specific GDL structure
- Alternative process tested by laser milling: Possible at small scale but further development needed at large scale (GDL deformation/twist caused during the process)

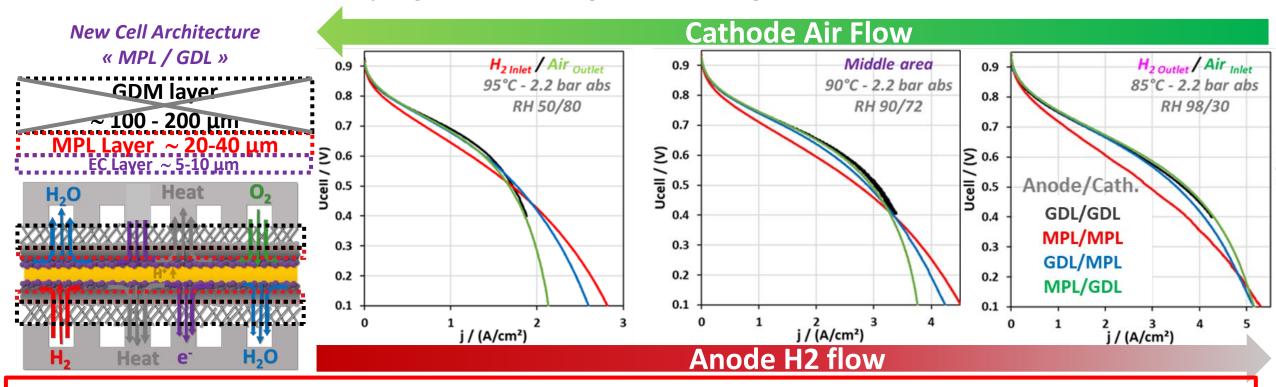

Investigations into innovative cell architectures




- Association of refined flow-field designs with single or dual GDM removal


GDM layer ~ 100 - 200 μm MPL Layer ~ 20-40 μm EC Layer ~ 5-10 μm

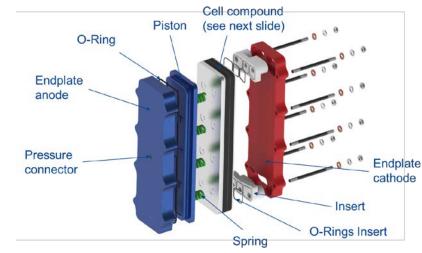
Operating conditions (post break-in) 80° C, H_2 /Air, 1.5/1.5 bar abs, RH 80%/80%


- Suppressing one GDM enable to reach satisfying performances post break-in under model operating conditions
- Preliminary validation of these innovative types of cell configuration

Investigations into innovative cell architectures

- R&D on new architectures coupling « Refined designs » and « single sided-GDL MEA »

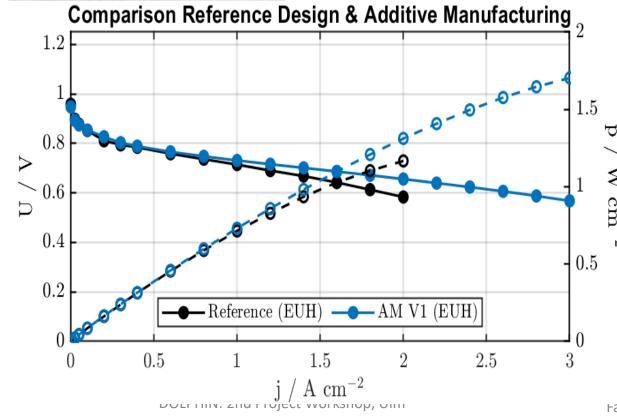
- Both GDM suppression \rightarrow Decrease of performances linked to ionomer drying at inlets/outlets and to insufficient in-plane electronic conduction within MPL
- Performances maintained or even slightly better by removing only one GDM
- → Decrease of cell pitch, materials and cost saving
- **Best configuration : GDL Anode + MPL on cathode active layer**→ Planned at 100 cm² scale


Performances at representative scale

Interest of Test Platform 2 « TP2 »

- Scaling up for EC/EFC to representative active area size (100 cm²)
- Validation of cell electrochemical performances under several EU conditions from previous projects (EU Harmonized from JRC recommandations, AutoStackCore, GAIA...)
- Characterizations of fluidics and thermal behavior to support stack design
- Validation of EC core formulation and further insights for local texturing
- Performances/Durability characterizations in representative and heterogeneous operating condition
- Hardware can be reused for TP3 short-stack

Innovative EFC: Additive manufacturing process



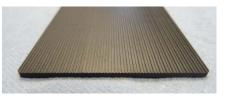
Reference Flowfield Carbon composite

	Parameter	Unit	EUH
	TCI	°C	80
)	TA/C	°C	82
	DPT A/C	°C	64.0/53.0
	RH A/C	%	50.5/30.2
	Stoic A/C	1	1.4/1.6
	pA/C	barg	1.5/1.3
	p in/out	-	out
	Mingas A/C	A/cm ²	0.3
	N ₂ A	%	0

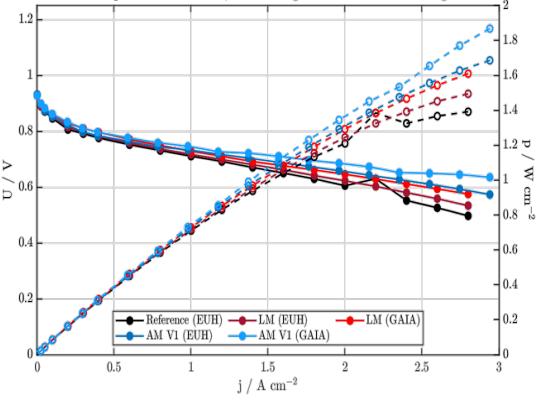
Reference EFC

- Channel/rib/depth
- Ref Anode: 400 / 400 / 200
- **Reference Cathode: 500 / 500 / 300**
- Tests of 2 versions of AM TP2 EFC
 - Channel/rib : Anode & Cathode
 - AM v1 : ~ 330 / 260 μm
 - AM v2 : ~ 300 / 200 μm
- Use of EU-Harmonized conditions (pressure regulated at cell outlet)
- Performances AM v1
 - 3 A/cm² @ 0.58 V : 1.75 W/cm²
- AM v1 pressure drops
 - $\sim 50 / 260 \text{ mbar } @ 0.66 \text{ V } (ca. 2 \text{ A cm}^{-2})$

June 16th 2023 12 Faprice MICOUD



Innovative EFC: Additive manufacturing and laser milling


Reference Flowfield Carbon-based

AM V1 Flowfield Laser-Milled Flowfield
Stainless steel + gold coating Carbon-based pad

Parameter	Unit	EUH
TCI	°C	80
TA/C	°C	82
DPT A/C	°C	64.0/53.0
RH A/C	%	50.5/30.2
Stoic A/C	1	1.4/1.6
pA/C	barg	1.5/1.3
p in/out	-	out
Mingas A/C	A/cm²	0.3
N ₂ A	%	0

GAIA conditions not disclosed

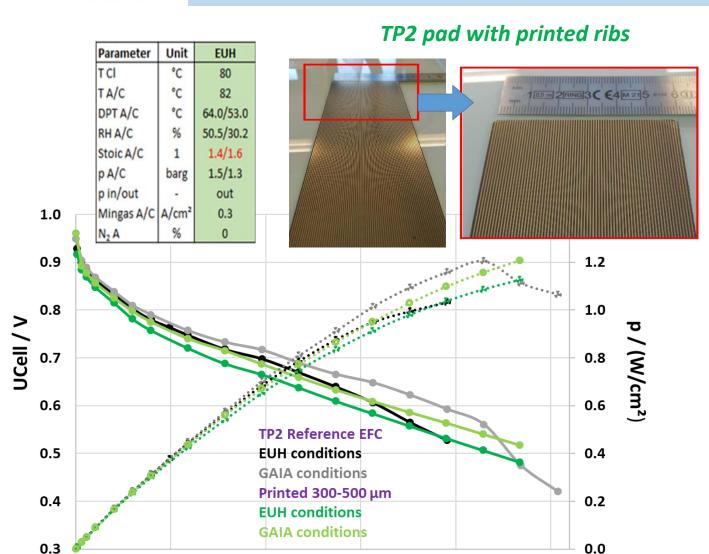
Fabrice MICOUD

Alternative Laser Milled EFC

- Channel/rib/depth dimensions
- Anode : \sim 200 / 100 μm
- Cathode : ~ 200 / 100 μm
- Very thing pattern & smaller sizes obtained for LM vs. AM v1
- Comparison between EU-Harmonized and GAIA conditions (pressure regulated at cell outlet)
- Performances AM v1 > LM
- GAIA conditions leads to higher performances than EUH

0.0

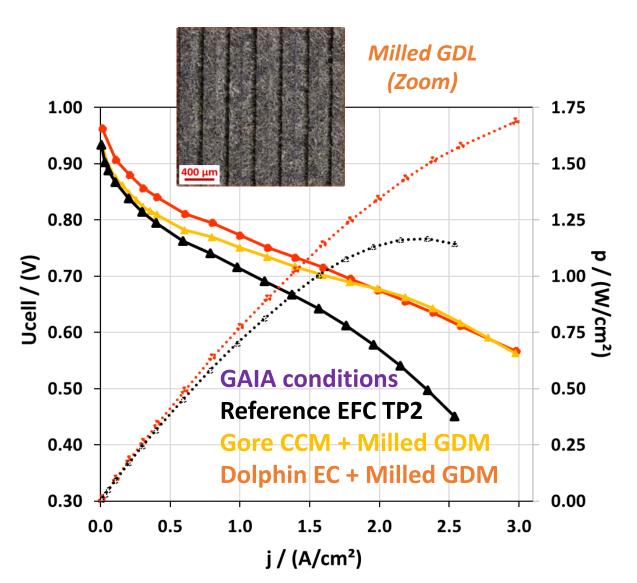
0.5


DOLPHIN: 2nd Project Workshop, Ulm

Innovative EFC: Carbon –printed ribs

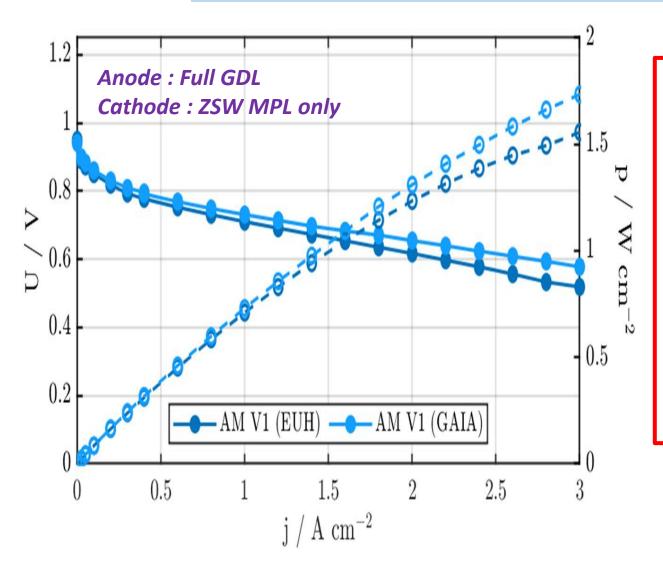
2.5

2.0



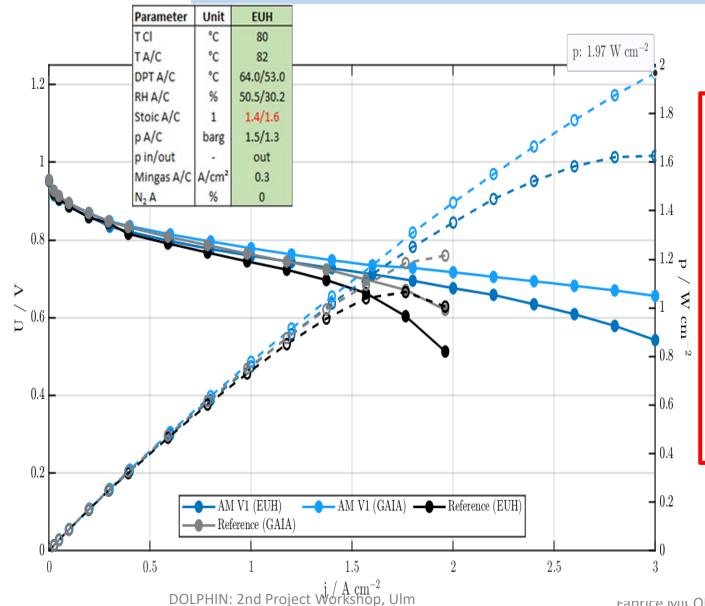
- Raw electrochemical performances slightly lower for printed ribs than reference design (Ohmic drop / compression effect)
- Positive effect from refined pattern for rib/channel is balanced with higher electronic resistivity within ribs.
- Technology still interesting at complete stack level in terms power density

Innovative EFC: Channels integrated into GDM



- Deposition of ZSW MPL onto machined GDM
- Cell assembly with Gore EC and advanced DOLPHIN EC
 - 2.2 A/cm² @ 0.66 V : 1.4 W/cm² (~ 1 W/cm²)
 - 3.0 A/cm² @ 0.57 V : 1.7 W/cm²
- Cell assembly and EFC concept validated at representative scale but milling not suitable with all GDM (GDL) materials in terms of thickness and mechanical properties.

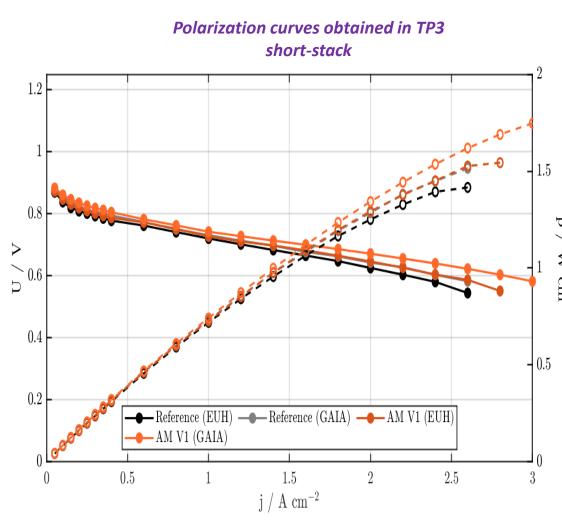
Innovative EFC | EC interfaces: Suppression of one GDM layer


- Tests of 2 configurations using AM v1 EFC
 - Single MPL Anode & GDL Cathode (not shown)
 - Anode GDL and MPL Cathode
- Single MPL at the cathode gives the best performances in 100 cm² single cell (as expected from 2 cm² single cell results)
- Performances obtained :

- 1.8 A/cm² @ 0.66 V : 1.2 W/cm²
- 3 A/cm² @ 0.58 V : 1.75 W/cm²
- Interesting Architecture regarding materials & cost saving

TP2: Comparison between reference EFC and EC and the best DOLPHIN concept

- Comparison from the reference case (SoA) and the best DOLPHIN configuration tested so far
- Reference EFC and reference EC (Gore CCM)
- AM v1 and latest DOLPHIN EC
 - **RP4 DOLPHIN active layers**
 - **Advanced CHEMOURS membrane NDP 8011**
 - Thin GDL


Faprice IVIICOUD

- **Performances obtained under GAIA conditions**
 - 3 A/cm² @ 0.657 V: 1.97 W/cm²!

TP3: Validation of additive manufacturing EFC and DOLPHIN EC into short stacks

AM V1 Flowfield
Stainless steel + gold coating

TP3 short-stack

EFC: AM v1

Fabrice MICOUD

EC: Gore CCM and commercial GDL

- Assembly of short-stack using AM V1 EFC and Reference Gore EC
- 1.6 W/cm² obtained under EUH conditions
- 1.8 W/cm² under GAIA conditions
- Evaluation of durability in progress at ZSW using FC-DLC cycles under EUH conditions
- Performances and durability to be compared with fullstacks (Q3/Q4 2023)

DOLPHIN

Disruptive pemfc stack with nOvel materiaLs, Processes, arcHitecture and optimized INterfaces

DOLPHIN Workshop, Ulm June 16th 2023 **Estimation of KPIs**

J.-P. Poirot-Crouvezier, all

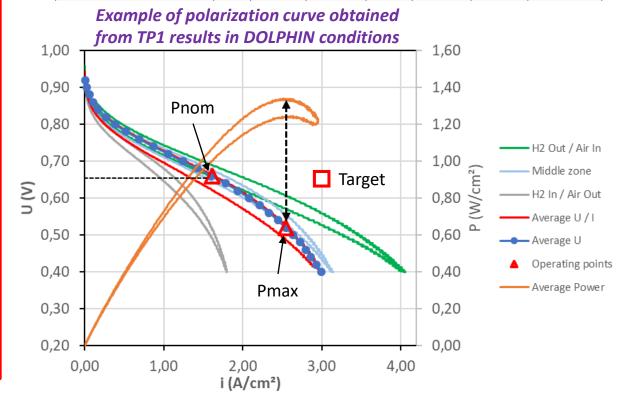
Estimation of KPIs

Objective

 Estimate the gravimetric and volumetric power density for a stack with the different EFCs studied

Results

- Gravimetric and volumetric power density for a stack
 - Ideal (at 2 W/cm²)
 - ☐ Target = 3 A/cm² @ 0,66 V
 - Expected considering experimental results
 - △ Pnom = performance @ 0,66 V
 - △ Pmax = performance at maximum cell power


• TP1 (2 cm²)

- 3 local operating conditions corresponding to cell inlet/middle/outlet for DOLPHIN « Max power » condition
- ➤ Extrapolated cell polarization curve → Pnom/Pmax

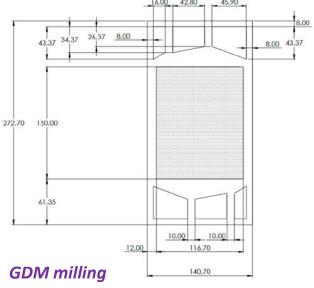
• TP2 (100 cm²)

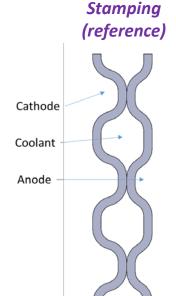
- European Harmonized conditions (EUH)
- GAIA conditions
- > Pnom/Pmax for each operating condition

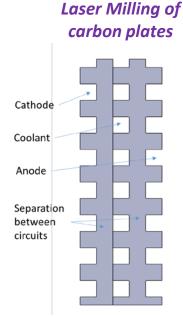
Local conditions	T / °C	P A/C bar abs	RH A/C (%)	% O2 in dry gas	H2 Flow rate NI/h	Air Flow rate NI/h	N2 Flowrate NI/h
Based on max power							
H2 outlet /Air Inlet	85	2.2 / 2.2	98 / 30	21	38	95	
Middle zone	90	2.2 / 2.2	90 / 72	14,5	38	65.6	29.4
H2 Inlet / Air Outlet	95	2.2 / 2.2	50 / 80	7,8	38	35.3	59.7

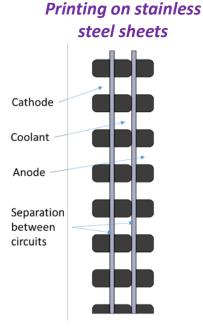
Sizing of 100 kW stacks

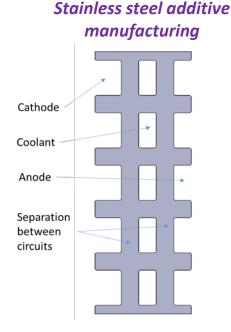
Input data for each EFC

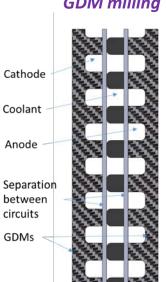

- General dimensions of TP4 cells
 - 175 cm² active area
 - 380 cm² active area
- Specific geometrical data (material density, thickness of the different layers...)

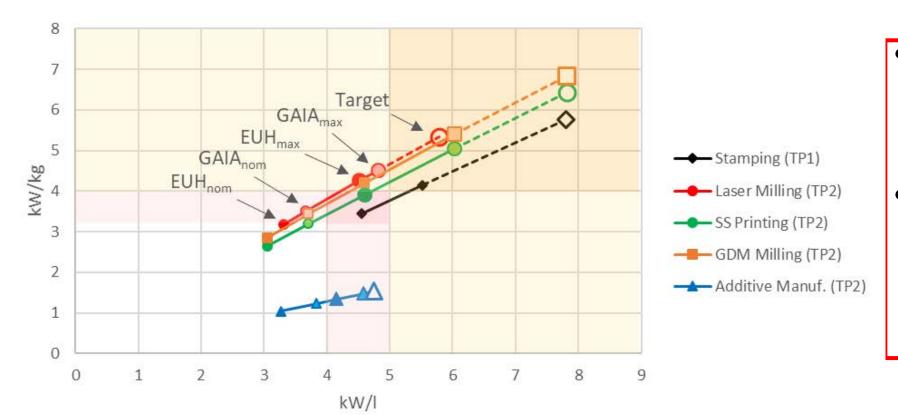

• Stack hardware


- Additional weight = 5 kg
- Additional volume = 2,5 liters


Adjusted parameter


Number of cells in the stack





KPI values for several EFCs

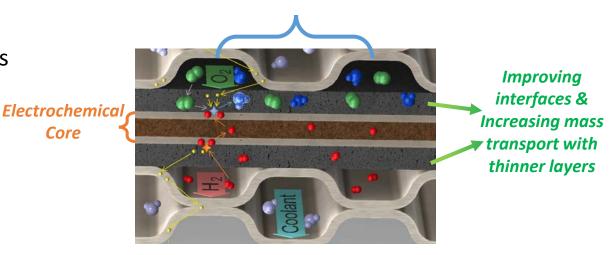
- AM is very close to target for GAIA_{max}
 - Gravimetric power density remains low due to the density of stainless steel
- GDM Milling and Printing don't reach 2W/cm² but power densities are high thanks to thin metal sheets

DOLPHIN

Disruptive pemfc stack with nOvel materiaLs, Processes, arcHitecture and optimized INterfaces

DOLPHIN Workshop, Ulm June 16th 2023 Back-up

Presentation outline

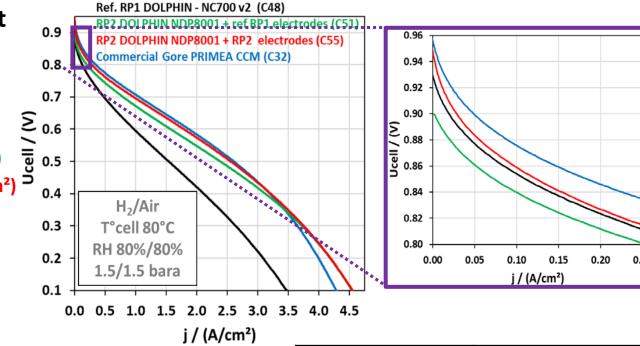

Experimental strategy for the validation of innovative concepts for Electrochemical and Electric and Fluidic Cores

Core

Fabrice MICOUD

- Main aspects first studied at small scale
 - Electric and Fluidics Core
 - → Impact of the rib/channel design on the performances
 - → Innovative fabrication processes
 - Optimization of the EC|EFC interface
 - → Development of self-standing MPL materials
 - → Towards the suppression of GDM support materials to reduce cell thickness
 - Optimization of the EC
 - →Integration of new materials (membrane, catalysts)
 - →Optimization of electrode composition
- Validation of performance at representative scale

Reduction of the rib/channel size design



Development of new EC components

Co-funded by the European Union

- **Characterizations of reference EC and developement** in RP1 and RP2
 - Commercial Gore CCM (0.1/0.4 mgPt/cm²)
 - **DOLPHIN RP1: Ref. membrane CHEMOURS + RP1 electrodes** $(0.1/0.4 \text{ mgPt/cm}^2)$
 - DOLPHIN RP2: NDP8001 + RP1 electrodes (~ 0.1/0.4 mgPt/cm²)
 - DOLPHIN RP2: NDP 8001 + RP2 electrodes (~ 0.05/0.3 mgPt/cm²)
- **Integration of new membranes from CHEMOURS**
 - Thinner membrane: 10 µm vs 18 µm
 - Higher performances / increased proton conductivity
 - NDP8011 version available for the project since 2022
- Modification/Improvement of electrodes manufacturing Softer manufacturing conditions
 - **Less mechanical stress** for the membrane (+ 50 mV @ OCP)
 - Better electrochemical activity at low overpotential...

			@ 0.86 V		@ 0.50 v	
	EC type	An/Cath. Pt Loading (mg/cm²)	j / (A/cm²)	p / (W/cm²)	j / (A/cm²)	p / (W/cm²)
	Ref DOLPHIN from RP1	0.1/0.4	0.66	0.44	1.54	0.72
	NDP 8001 + RP1 electrodes	0.16/0.4	1.09	0.72	2.39	1.20
	NDP 8001 + RP2 electrodes	0.023/0.26	1.30	0.86	2.56	1.25
	Gore PRIMEA CCM	0.1/0.4	1.39	0.92	2.61	1.30

@ 0 66 V

DOLPHIN: 2nd Project Workshop, Ulm DOLPHIN Project: Mid-Term Review (virtual)

Fabrice MICOUD

 Θ 0 50 V